Tetrahedron Letters, Vol.26, No.5, pp 571-574, 1985 Printed in Great Britain

0040-4039/85 \$3.00 + .00 ©1985 Pergamon Press Ltd.

ALDOL DIMERIZATION OF 1-INDANONE AND 1-TETRALONES

A. G. Holba,¹ V. Premasager, B. C. Barot, and E. J. Eisenbraun^{*} Oklahoma State University, Department of Chemistry, Stillwater, Oklahoma 74078

Abstract: The aldol dimerization of 1-indanone and 1-tetralones using titanium tetrachloride and triethylamine as condensing agents provides $\alpha_{,\beta}$ - and $\beta_{,\gamma}$ -unsaturated ketones, respectively, in 53-58% yield.

Aldol dimerization of ketones has been extensively reviewed.² However, dimerization of l-tetralones has not received wide attention despite the attractiveness of these products as precursors in the synthesis of α,β -linked polycyclic systems.³ For example, 1,2'-binaphthyl systems and hydrogenated derivatives free of the 1,1'- and 2,2'-isomers.³

The dimer product isolated from the acid-catalyzed, self-condensation of 1-tetralone (1) was previously reported to be the α,β -unsaturated ketone 4.^{3a} This structure has been corrected to that of the β,γ -unsaturated ketone 2.^{4a,4b} The yield of 2 in these earlier preparations^{4a,4b} was low but to date, it is the only pure compound reported from the reaction. We attempted improving the yield of 2 using acidic^{5a,b} and basic^{5c} reagents. Of these, Amberlyst-15^{5b} in refluxing xylene, was the most practical but the yield did not exceed 20%. Under comparable conditions, 6-methoxy-1-tetralone failed to react. We also tried using <u>p</u>-toluenesulfonic acid in ethylene glycol and toluene according to a patented procedure⁶ for dimerization of 6-methoxy-1-tetralone. The yield of dimer ketone was 12%.

 $^{a}H^{+}$, $^{H}2^{O}$, Δ . $^{b}TiCl_{4}$, -10 °C. ^{c}l -Tetralone, (CH₃CH₂)₃N.

Using equimolar quantities of 1 and the preformed enolate 3, in the presence of anhydrous triethylamine, gave 2 in 70% yield.⁶ We could not isolate or show that 4 is a product. This result prompted study of related ketones to gain information about the regioselectivity of formation of the compounds shown in Table I. Of these, 5, 7, and 8 are new.

Table I lists the dimer ketones prepared using preformed titanium enolates. In all cases involving self-condensation of l-tetralones, the β , γ -unsaturated isomer was obtained as the isolated product. The α , β -unsaturated isomer is possibly present in the reaction mixture but we were unable to isolate or identify it. In comparison, applying this procedure to l-indanone, we obtained the crystalline α , β -unsaturated ketone **9** free of the β , γ -isomer.

Table 1. WAR and Held Data for Dimer Recon	Table	I.	NMR	and	Yield	Data	for	Dimer	Ketone
--	-------	----	-----	-----	-------	------	-----	-------	--------

<u> </u>	Dimer Ketone	% Yield	mp, °C	l _{H-NMR} (δ from TMS) Vinyl ^a Methine ^b	¹³ C-NMR (ppm from TMS) Carbony1 ^C Methine ^d
2	of C	70	133–135 132–135 ^e	5.78 3.84	198.5 50.7 (197.4)
5	CH 30 CH OCH3	70	123-127	5.77 f	198.5 50.4 (196.6)
6	CH30 CH	78 3	123-125 124-1268	5.62 3.70	197.9 50.5 (197.8)
7		74	160-163	5.68 3.84	198.3 50.1 (197.8)
8		71	140-143	5.66 3.76	198.7 49.8 (197.5)
9 h		53	142-143 ⁱ	j j	194.6 j (206.1)

^aVinyl triplet, J=4-5 Hz. ^bMethine triplet, J=6-7 Hz. ^cShift value of monomer ketone carbonyl is noted in parentheses. ^d $_{\alpha}$ to C=0. ^eRef. 4b. ^fObscure. ^gRef. 4c. ^hStructure **9** is arbitrary. We have no evidence regarding its stereochemistry. ⁱ(Lit.⁷ 142-143 °C) Yellow crystals, failed to form oxime. ^jAbsent.

We attempted cross condensation of preformed enolate of 1-tetralone with 1-indanone as well as preformed enolate of 1-indanone and 1-tetralone. An intractable complex mixture resulted in both cases. GC/MS studies showed these to be similar mixtures of C_{18} , C_{19} , and C_{20} dimers.

As expected, the titanium enolate method is sensitive to steric effects. Dimerization of 3,5,8-trimethyl-l-tetralone, as a trial case, gave no more than a trace of dimer with starting material recovered.

To verify the structure assignments suggested for 2, 5, 6, 7, 8, and 9 1 H- and 13 C-NMR spectra were obtained. Comparison of carbonyl resonances in the 13 C-NMR spectra of 2, 5, 6, 7, and 8 with those of the respective monomer ketone shows little change in chemical shift from TMS, whereas the spectrum of 9 shows a 12 ppm carbonyl upfield shift from that of 1-indanone.

Ketones 2, 5, 7, and 8 show a carbonyl deshielding of 1 to 2 ppm with respect to their corresponding monomer ketone. This is due to substitution α to the carbonyl in the dimer ketones. Compound 9 shows a ¹³C shielding effect on the carbonyl group due to contribution from neighboring carbon-carbon double bond. This is due to increased electron density at the carbonyl carbon from the conjugated π system. Thus, ¹³C-NMR clearly shows absence of conjugation in ketones 2, 5, 7, and 8 as was observed for 9. There is a consistent shift of the vinyl proton resonance and also that of the methine proton α to the carbonyl group in the β , γ -unsaturated ketones 2, 5, 6, 7, and 8 as given in Table I. These high absorptions are absent in the spectrum of 9.

High resolution mass spectral data for the compounds in Table I verified the emperical formulae. The elemental analyses in Table II also confirmed the emperical formulae of 5, 7, and 8.

Compound	Formula	Calculated Mass	Observed Mass	Calculated (Found) % C H
2	C ₂₀ H ₁₈ O	274.2357	274.2340	
5	^C 22 ^H 22 ^O 3	334.1569	334.1560	79.00 (79.09) 6.64 (6.81)
6	^C 22 ^H 22 ^O 3	334.1569	334.1554	
7	C ₂₈ H ₃₀ O	382.2297	382.2285	87.91 (88.10) 7.91 (7.87)
8	$C_{28}H_{30}O$	382.2297	382.3210	87.91 (87.94) 7.91 (8.00)
9	$C_{18}^{H_{14}O}$	246.1044	246.1073	

Table II. High Resolution Mass Spectral and Elemental Analyses Data.

General Procedure for the Preparation of β_{γ} -Unsaturated Ketones.⁶ 3,3',4,4'-Tetrahydro-1',2-binaphthalen-1(2H)-one. To 200 mL of olefin-free <u>n</u>-hexane was added 69.9 g (56.0 mL, 0.51 mol)TiCl₄ in an N₂ atmosphere. The mixture was cooled by an ice-salt water bath to -10 °C and a solution of 66 mL (72.5 g, 0.5 mol) of 1-tetralone (1) in 850 mL CH₂Cl₂ was added rapidly, with vigorous stirring, to give a fluffy, yellow precipitate. Subsequently, a solution of 66 mL (72.5 g, 0.5 mol) of **1** and 148 mL (1^7.5 g, 1.1 mol) of triethylamine diluted to 850 mL with CH₂Cl₂ was added. The ensuing red-black solution was stirred at -10 °C for 40 min and then allowed to warm to room temperature. After 16 h, the black product was treated with 1.6 L H₂O (3x), dried (MgSO₄), and concentrated. The product was washed with 200 mL of 2-propanol and the wash was filtered to give a combined yield of 96 g (70%) of **2**. Recrystallization from 1 L of 2-propanol gave 70 g of white crystals: mp 130-133 °C [1it.^{4b} 133-135 °C]; ¹H-NMR (CDCl₃) δ 8.1 (m, 1, ArH peri to carbonyl), 7.00-7.55 (m, 7, ArH), 5.77 (m, 1, C-2' vinyl H), 3.83 (t, 1, C-2 methine H), 3.00 (m, 2, C-4' H), 2.64-2.85 (m, 2, C-4), 2.1-2.45 (m, 4, C-3, C'H); mass spectrum m/z (M⁺, 100).

Preparation of 5,6,7,8 and 9. Application of the above procedure to the appropriate monomer ketone gave the following colorless dimeric ketones. The yields and other data are found in Tables I and II.

7,7'-Dimethoxy-3,3',4,4'-tetrahydro-1',2-binaphthalen-1(2H)-one (5). 6,6'-Dimethoxy-3,3',4,4'-tetrahydro-1',2-binaphthalen-1(2H)-one (6). 3,3',4,4',5,5',6,6',7,7',8,8'-Dodecahydro-1',2-bianthracen-1(2H)-one (7). 3,3',4,4,',5,5',6,6',7,7',8,8'-Dodecahydro-1',2-biphenanthrene-1(2H)-one (8). 2-[2',3'-Dihydro-1'H-inden'1'-ylidene]-2,3-dihydro-1H-inden-1-one (9).

Acknowledgments. We thank Oklahoma State University for support through a Presidential ChallengeGrant and the U. S. Department of Energy for support for the high resolution mass spectral data.

References and **Footnotes**

1. A. G. Holba, Ph.D. Thesis, Oklahoma State University, July 1980.

(a) A. T. Nielsen and W. J. Houlihan, <u>Organic Reactions</u>, <u>16</u>, 1 (1969), (b) D. A. Evans,
J. V. Nelson, T. R. Taber, "Topics in Stereochemistry," Vol. 13, N. L. Allinger, Ed., E. L.
Eliel, Ed., S. H. Wilen, Ed., Wiley, pp. 1-115 (1982).

3. (a) M. Orchin, L. Reggel, R. A. Friedel, <u>J. Am. Chem. Soc.</u>, <u>71</u>, 2743 (1949), (b) J. W. Burnham, R. G. Melton, E. J. Eisenbraun, G. W. Keen, M. C. Hamming, <u>J. Org. Chem.</u>, <u>38</u>, 2783 (1973).

(a) H. L. Retcofsky, L. Reggel, R. A. Friedel, <u>Chem. and Ind.</u>, 617 (1969), (b) J. M. Springer, C. W. Hinman, E. J. Eisenbraun, P. W. K. Flanagan, M. C. Hamming, <u>J. Org. Chem.</u>, 35, 1260 (1970), (c) R. E. Gentry, R. R. Burtner, U. S. 2,836,624, May 27, 1958.

5. (a) HCl, Amberlyst-15, Amberlyst-29, and CH_3SO_3H , (b) We thank the Pennwalt Corp. for a sample of methanesulfonic acid, (c) NaOH, Triton B and <u>p</u>-dimethylaminopyridine. We thank Rhom and Haas Company for supplying A-15. Literature on the use of A-15 is available from them.

6. L. J. Mazza, A. Guarna, Synthesis, 41 (1980).

7. F. S. Kipping, J. Chem. Soc., 65, 495 (1894).

(Received in USA 1 October 1984)